Insect infestations in stored grain cause extensive damage worldwide. Storage insect pests, including the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae); Sitophilus spp. (Coleoptera: Curculionidae); and their natural enemies [e.g., Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae), and Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae)] inhabit a temporary, but stable ecosystem with constant environmental conditions. The objective of the present experiment was to assess the efficacy of using ethylene glycol antifreeze in combination with nutrient solutions to monitor storage insect pest and natural enemy populations in three bins of corn, Zea mays L. The treatments were deionized water, a diluted (1:5 antifreeze:water) antifreeze solution, 10% honey, 10% honey in the diluted antifreeze solution, 10% beer in the diluted antifreeze solution, 10% sucrose in the diluted antifreeze solution, and a commercial pheromone trap suspended in a 3.8-liter container filled with 300-ml of diluted antifreeze solution. The seven treatments captured storage insect pests and their natural enemies in the bins at 33–36°C and 51–55% RH. The pheromone trap in the container with the diluted antifreeze captured significantly more P. interpunctella than the other treatments, but a lower percentage (7.6%) of these captures were females compared with the rest of the treatments (>40% females). All trapping solutions also captured Sitophilus spp. and other beetle species, but the captures of the coleopteran pests were not significantly different among the seven treatments (P > 0.05). Two parasitoid wasps also were captured in the study. The number of A. calandrae was different among the seven treatments (P < 0.05), whereas the number of C. tarsalis was not different among the treatments (P > 0.05). Most A. calandrae adults were captured by the 10% honey in the diluted antifreeze, whereas the fewest were captured in the deionized water. Microbial growth was observed in the 10% honey solution, but no microbial growth occurred in the rest of the treatments, including 10% honey in the diluted antifreeze solution. The results of insect captures and microbial growth demonstrated that antifreeze could be used as a part of storage insect monitoring and/or control programs.
How to translate text using browser tools
1 April 2008
Insect-Attracting and Antimicrobial Properties of Antifreeze for Monitoring Insect Pests and Natural Enemies in Stored Corn
Xinzhi Ni,
Gunawati Gunawan,
Steve L. Brown,
Paul E. Sumner,
John R. Ruberson,
G. David Buntin,
C. Corley Holbrook,
R. Dewey Lee,
Douglas A. Streett,
James E. Throne,
James F. Campbell
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 101 • No. 2
April 2008
Vol. 101 • No. 2
April 2008
ethylene glycol
parasitoid
Plodia interpunctella
Sitophilus spp.
trapping